Optimal Control of Underactuated Underwater Vehicles with Single Actuator

نویسندگان

  • Mehmet Selçuk Arslan
  • Naoto Fukushima
  • Ichiro Hagiwara
چکیده

The research on underwater systems has gained an immense interest during the last decades with applications taken place in many fields such as exploration, investigation, repair, construction, etc. Hereby, control of underwater systems has emerged as a growing field of research. Underwater vehicles, in fact, accounted for 21% of the total number of service robots by the end of 2004, and are the most expensive class of service robots (UNECE/IFR, 2005). Typically, underwater vehicles can be divided into three underwater systems, namely, the manned submersibles, remotely operated vehicles (ROV) and autonomous underwater vehicles (AUV). ROVs and AUVs are mostly utilized in the oil and gas industries, and for scientific and military applications. AUVs, especially are of great importance due to their ability to navigate in abyssal zones without necessitating a tether that limits the range and maneuverability of the vehicle. However, their autonomy property directly affects the design of the control system. This requires advanced controllers and specific control schemes for given tasks. Almost all AUVs are six degrees-of-freedom (DOF) systems, and various types of actuator configurations are available in the industry for the vehicles ranging from fully-actuated vehicles to underactuated ones. The vehicle of interest here falls into the class of underactuated AUVs. Any mechanical system having fewer actuators than its degrees of freedom is defined as an underactuated system. Some examples of underactuated systems include manipulators; (Arai et al., 1998), (Oriolo & Nakamura, 1991), (Yabuno et al., 2003), marine vehicles; (Reyhanoglu, 1997), (Pettersen & Egeland, 1996), space robots; (Tsiotras & Luo, 1997), and the examples given in (Fantoni & Lozano, 2002). Controlling all of the DOF of underactuated mechanical systems is an arduous task compared to the fully actuated systems since the mathematical analysis of the system renders it difficult. Determining whether an underactuated system is controllable is one of these difficulties encountered. Control synthesis is also another challenge in this field and is still accepted as an open problem. The techniques used for fully actuated systems cannot be used directly for underactuated systems. However, there are some potential benefits over fully actuated systems depending on the efficiency of control and the task. In case of actuator failures, a fully actuated mechanical system falls into the class of underactuated systems and might still be controlled if a successful control scheme can be designed. Besides that, reduction of the weight and cost, and the increase of reliability can be considered as O pe n A cc es s D at ab as e w w w .in te ch w eb .o rg

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control Properties of Underactuated

This paper studies control properties of the dynamics of underactuated vehicles (e.g. underactuated surface vessels, underwater vehicles, aeroplanes or spacecraft). The unactuated dynamics implies constraints on the accelerations. Both the necessary and suucient conditions for these constraints to be second-order nonholonomic, rst-order nonholonomic or holonomic are developed. It is shown that ...

متن کامل

Autonomous Underwater Vehicle Model for Underactuated Control Design and Path Following Applications

A manoeuvring model and a design technique for path following applications of underactuated underwater vehicles are summarized. The model applies to slender body autonomous underwater vehicles (AUV) of cylindrical shape employing similar types of steering and diving control surfaces, and is meant for low speed manoeuvring applications. The underactuated design procedure used to successfully sol...

متن کامل

Guidance and Control for Underactuated Autonomous Underwater Vehicles

The main focus of this paper is on the motion planning problem for an under-actuated, submerged, omni-directional autonomous vehicle. Underactuation is extremely important to consider in ocean research and exploration. Battery failure, actuator malfunction and electronic shorts are a few reasons that may cause the vehicle to loose direct control of one or more degrees-of-freedom. Underactuation...

متن کامل

Single range observability for cooperative underactuated underwater vehicles

The paper describes the single range observability issues related to a kinematics model of cooperating underwater vehicles. The paper extends previous results building on an augmented state technique allowing to reformulate the nonlinear observability problem in terms of a linear time varying one. As a result, all possible (globally) unobservable motions are characterized in terms of the system...

متن کامل

Autonomous Control for a Differential Thrust ROV

Smaller autonomous underwater vehicles that use differential thrust for surge and yaw motion control has the advantage of low cost and, at the same time, increased ma­ neuverability in yaw direction. However, since such vehicles are underactuated vehicles, design of an autonomous control system that enables the vehicle to autonomously track a predefined trajectory is challenging. In this paper,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012